<□ > < □ > < □ > < Ξ > < Ξ > Ξ のQ @ 1/23

A Discussion of: Job Matching and the Wage Distribution

Alden Porter

Boston University

September 19, 2021

Model Details

Calibration 0000000

Introduction

<□ ▶ < □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q @ 2/23

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction

This paper studies a model of learning about static *match quality*.

- These models a number of dynamic facts about the labor market:
 - Wages rise with tenure.
 - Probability of quits initially rise then quickly fall with tenure.
 - Probability of quits fall with current wage.

Main Takeaway: In steady state, a simple model of this type *can* rationalize the cross sectional shape of the wage distribution.

Model Details

Calibration 0000000

<ロ> < 母> < 臣> < 臣> < 臣> 三 のへで 4/23

Theoretical Starting Point

Main basis for this paper is Javonavic 1984, adds in Mortensen Pissarides 1994 at the end and shows it doesn't change the implications.

Model Details

Calibration 000000

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Javonavic 1984, Setup

- Undirected search model with unknown firm-employee match quality.
- At will employment, workers capture entire surplus from match.
- Workers learn their true firm match quality $\mu \sim \mathcal{N}(\bar{\mu}, \sigma_{\mu}^2)$ over time, given an initial signal $m \sim \mathcal{N}(\mu, \sigma_m^2)$.
- Cumulative output at time t is given by a Weiner Process, i.e. $X(t) \sim \mathcal{N}(\mu t, \sigma^2 t)$, firms update on this.
- Information is destroyed after a match ends because firms and workers never meet again.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 ◆ ○ 6/23</p>

Mortensen Pissarides 1994, Setup

- Seeks to explain facts about job creation and destruction over the business cycle.
- Worker match productivity is known, but can change.
- Worker match productivity starts at the *maximum* possible level and is redrawn from a fixed distribution with a Poisson probability once a match is formed.
 - This is what generates job destruction in the model.
- Matching determined by a constant returns to scale matching function m(v, u).
- Workers capture constant fraction of surplus.

Moscarini 2005

The main features needed to get the right shaped wage distribution are:

- Nash Bargaining on wages (which gives a linear sharing rule).
- Binary support of unknown types so $\mu \in {\{\mu_L, \mu_H\}}$ with $\mu_H > \mu_L$, no initial signal.
- Cumulative output at time t is given by X(t) ~ N(μt, σ²t) it is observable, and firms and workers Bayesian update using it.
- Unemployed workers and employers meet at a Poisson rate λ , matches are destroyed at a Poisson rate δ .
- Appropriately "noisy" output.

This conclusion is unchanged under:

- Undirected on-the-job search.
- Steady state in a GE framework with a constant return to scale matching function m(v, u) and a free entry condition.
 - Unused in calibration.

Model Details

Calibration 0000000

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Key Model Predictions

- If output is given by a sufficiently noisy process, the wage distribution is single peaked with a fat right tail.
- Wages rise with tenure on average.
- The hazard rate of match separation rate initially increases and eventually decreases with tenure.
- Expected future tenure is increasing in the current wage.
- Calibrated model exhibits a kind of unemployment scarring, with welfare

Model Details

Calibration 0000000

Model Details

<□ ▶ < □ ▶ < 壹 ▶ < 壹 ▶ < 壹 ▶ ○ ♀ 9/23

Model Details

Calibration 0000000

Output and Beliefs

- $p_0 = P(\mu = \mu_H) \in (0, 1)$ ex-ante probability of a good match.
- The current belief conditional on the output history is defined to be $p_t \equiv \Pr\left(\mu = \mu_H \mid \mathcal{F}_t^X\right)$

The change in beliefs follows:

$$dp_t = p_t \left(1 - p_t\right) s d\bar{Z}_t \tag{1}$$

For

$$s \equiv \frac{\mu_H - \mu_L}{\sigma} \tag{2}$$

and

$$d\bar{Z}_t \equiv \frac{1}{\sigma} \left[dX_t - p_t \mu_H dt - (1 - p_t) \mu_L dt \right]$$
(3)

Model Details

Calibration 0000000

Worker HJB Equations

Let worker W(p) be the value of employment with belief p and U be the worker value of unemployment

$$rU = b + \lambda [W(p_0) - U]$$

$$rW(p) = w(p) + \Sigma(p)W''(p) - \delta[W(p) - U]$$
(4)

Where

$$\Sigma(p) \equiv \frac{1}{2}s^2 p^2 (1-p)^2$$
 (5)

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ のへで 11/23

is half the variance in the change in posterior beliefs. This measures the speed of learning and governs belief dispersion.

Calibration 0000000

Firm HJB Equations

Let J(p) denote the value of a *p*-match to a firm and assume the value of a vacancy is 0. Then

$$rJ(p) = \overline{\mu}(p) - w(p) + \Sigma(p)J''(p) - \delta J(p).$$
(6)

Where

$$\bar{\mu}(p) \equiv p\mu_H + (1-p)\mu_L. \tag{7}$$

Nash bargaining will imply:

$$\beta J(p) = (1 - \beta)[W(p) - U]$$
(8)

And that wages are an affine transformation of beliefs:

$$w(p) = (1 - \beta)b + \beta \left[\overline{\mu}(p) + \lambda J(p_0)\right]$$
(9)

↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ ♪ ○ ○ ○ 12/23

Tenure Function

Match is dissolved if $p_t \le p < p_0$. The tenure function is an increasing concave function of the belief a match is productive.

$$au(p) = rac{1}{\delta} \left\{ 1 - \left(rac{p}{\underline{p}}
ight)^{1/2 - \sqrt{1/4 + 2\delta/s^2}} \left(rac{1-p}{1-\underline{p}}
ight)^{1/2 + \sqrt{1/4 + 2\delta/s^2}}
ight\}$$

With this result in hand it is fairly easy to show that conditional on match continuation:

- 1. Wages rise with tenure.
- 2. The hazard rate of match separations rises initially then declines over time.
- 3. Expected future tenure is increasing in the current wage.

Model Details

Calibration 0000000

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ○ ○ ○ ○ 14/23

Distribution of Beliefs and Wages

$$f(p) = \{ c_{0f} \left[\left(\frac{1-p}{p} \frac{p}{1-p} \right)^{\sqrt{1+8\delta/s^2}} - 1 \right] \\ \times \mathbb{I} \left\{ \frac{p}{2} \le p < p_0 \right\} + c_{1f} \mathbb{I} \left\{ p_0 \le p \le 1 \right\} \right\} \\ \times p^{-1/2 - \sqrt{1/4 + 2\delta/s^2}} (1-p)^{-3/2 + \sqrt{1/4 + 2\delta/s^2}}$$
(10)

- The pdf of wages is an affine transformation of this function.
- This function is always increasing to the left of p₀ and decreasing to the right if δ ≥ s².
- $c_{0f}, c_{1f} > 0$

Calibration 000000

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ♪ ■ の へ ⁰ 15/23

On the Job Search

Workers now meet firms while on the job at a Poisson rate $\psi\lambda$ where $\psi<1.$

- When the worker contracts with a new employer the two employers play a poaching auction.
 - In the sub-game perfect equilibria Moscarini considers workers go to the poaching firm if and only if p < p₀ and get W(p₀).
 - This will mean that the qualitative properties of the wage distribution remain the same with on the job search.

Model Details

Calibration 0000000

General Equilibrium

Adds in a CRS matching function $m(v, a) = a^{\eta}v^{1-\eta}$ with a free entry condition as in Mortensen Pissarides 1994. The job finding rate λ is now given by:

$$\lambda = \frac{m(a, v)}{a} = m\left(1, \frac{v}{a}\right) = \theta^{1-\eta}$$
(11)

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ のへで 16/23

Where here we have job applicants *a* instead of unemployed since there is on the job search.

- Problem has a unique stationary solution which features positive employment.
- Doesn't affect qualitative conclusions except that now we "macrofound" $\lambda.$

Model Details

Calibration •000000

Calibration

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ↔ 17/23

Intr	od	uct	ion
000	00	00	0

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ♪ ■ のへで 18/23

Calibration

- Calibrate the model in steady state separately for college educated and non-college educated workers.
- Uses this calibration to graph the distribution of beliefs and tenure function.
- Normalizes out productivity terms μ_i.
- Estimates rate of time preference r and hazard rates λ from the data.
- Select $\delta, \psi, \sigma, b, p_0$ and β to minimize sum of square deviations from empirical moments.
 - Output is normalized so that $\mu_H \mu_L = 1$, matching will require $\delta \approx \frac{1}{\sigma^2}$

Calibration

Moment	Model	Data
Jobless fraction	9.68	9.5
Fraction who search on the job (%)	5	5
Quits to joblessness	.91	.9
Exogenous separations	1.17	1.2
Job-to-job quits	1.07	1.1
Hires from joblessness	2.08	2.1
(Avgerage - Median)/(SD) of wages	.22	.19
% of wages lost due to displacement	14.3	13.8

Table 1: Calibrated to minimize sum of squared distance between model output and empirical observations.

Model and Observed Job Hazard as Functions of Tenure

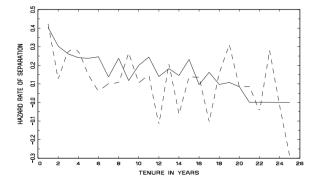


Figure A.1: Hazard rate of separation: model (solid line) and data (dashed line).

Model Details

Calibration 0000000

Model Wage Distribution

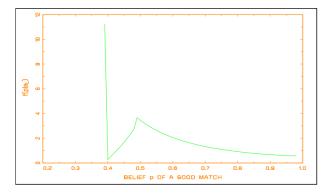
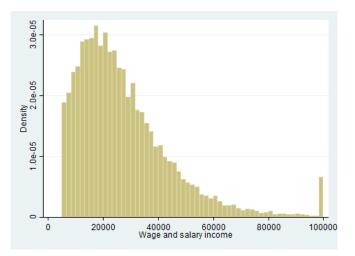



Figure A.3: The ergodic and stationary density of beliefs on match quality for low-skill workers. The atom at the lower bound is the stationary measure of low-skill jobless workers.

Model Details

Calibration 0000000

Empirical Income Distribution

March CPS post 1996 real wage-income distribution in 1993 dollars for men earning less than 100k a year without a bachelors degree. Ξ 22/23

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ○ ○ ○ 23/23

Conclusion

Models of learning explain well dynamic facts about wages, this paper shows they also explain the cross section well.

- However, they can only do this when the rate of learning is slow, but not too slow.
 - Suggests a possible test of these models if one can estimate δ and s^2 , we should have $s^2\approx\delta$
- Intuitively, this condition is a requirement that income growth of successful matches looks like random income growth.